Sequence-specific interaction of U1 snRNA with the SMN complex.
نویسندگان
چکیده
The survival of motor neurons (SMN) protein complex functions in the biogenesis of spliceosomal small nuclear ribonucleoprotein particles (snRNPs) and prob ably other RNPs. All spliceosomal snRNPs have a common core of seven Sm proteins. To mediate the assembly of snRNPs, the SMN complex must be able to bring together Sm proteins with U snRNAs. We showed previously that SMN and other components of the SMN complex interact directly with several Sm proteins. Here, we show that the SMN complex also interacts specifically with U1 snRNA. The stem--loop 1 domain of U1 (SL1) is necessary and sufficient for SMN complex binding in vivo and in vitro. Substitution of three nucleotides in the SL1 loop (SL1A3) abolishes SMN interaction, and the corresponding U1 snRNA (U1A3) is impaired in U1 snRNP biogenesis. Microinjection of excess SL1 but not SL1A3 into Xenopus oocytes inhibits SMN complex binding to U1 snRNA and U1 snRNP assembly. These findings indicate that SMN complex interaction with SL1 is sequence-specific and critical for U1 snRNP biogenesis, further supporting the direct role of the SMN complex in RNP biogenesis.
منابع مشابه
snRNAs contain specific SMN-binding domains that are essential for snRNP assembly.
To serve in its function as an assembly machine for spliceosomal small nuclear ribonucleoprotein particles (snRNPs), the survival of motor neurons (SMN) protein complex binds directly to the Sm proteins and the U snRNAs. A specific domain unique to U1 snRNA, stem-loop 1 (SL1), is required for SMN complex binding and U1 snRNP Sm core assembly. Here, we show that each of the major spliceosomal U ...
متن کاملIdentification of truncated forms of U1 snRNA reveals a novel RNA degradation pathway during snRNP biogenesis
The U1 small nuclear ribonucleoprotein (snRNP) plays pivotal roles in pre-mRNA splicing and in regulating mRNA length and isoform expression; however, the mechanism of U1 snRNA quality control remains undetermined. Here, we describe a novel surveillance pathway for U1 snRNP biogenesis. Mass spectrometry-based RNA analysis showed that a small population of SMN complexes contains truncated forms ...
متن کاملSplicing factor U1-70K interacts with the SMN complex and is required for nuclear Gem integrity
The nuclear SMN complex localizes to specific structures called Gems. The loss of Gems is a cellular marker for several neurodegenerative diseases. Here, we identified the U1 snRNP specific protein U1-70K localized to nuclear Gems and showed that U1-70K is necessary for Gem integrity. Further we showed the interaction between U1-70K and the SMN complex is RNA independent and mapped the SMN comp...
متن کاملThe splicing factor U1-70K interacts with the SMN complex and is required for nuclear gem integrity.
The nuclear SMN complex localizes to specific structures called nuclear gems. The loss of gems is a cellular marker for several neurodegenerative diseases. Here, we identify that the U1-snRNP-specific protein U1-70K localizes to nuclear gems, and we show that U1-70K is necessary for gem integrity. Furthermore, we show that the interaction between U1-70K and the SMN complex is RNA independent, a...
متن کاملThe U1, U2 and U5 snRNAs crosslink to the 5′ exon during yeast pre-mRNA splicing
Activation of pre-messenger RNA (pre-mRNA) splicing requires 5' splice site recognition by U1 small nuclear RNA (snRNA), which is replaced by U5 and U6 snRNA. Here we use crosslinking to investigate snRNA interactions with the 5' exon adjacent to the 5' splice site, prior to the first step of splicing. U1 snRNA was found to interact with four different 5' exon positions using one specific seque...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The EMBO journal
دوره 21 5 شماره
صفحات -
تاریخ انتشار 2002